
The C Programming
Language

by Erica D. Perkins

June 7th, 2025

© 2025 Erica D. Perkins LLC

All rights reserved

Version 1.0

License: MIT License
https://opensource.org/license/mit/

https://opensource.org/license/mit/

Contents
1 Introduction to C Programming Language 2

1.1 Fundamental tasks when authoring a C Program 2
1.2 Single and Multi-line Comments 4

2 Pointers 5
2.1 Declaring and Initializing Pointers 5
2.2 Dereferencing Pointers 6
2.3 Pointer Arithmetic 11
2.4 Pointers and Arrays 12
2.5 Arrays in C . 13
2.6 Pointers to Pointers 14

3 File I/O 16
3.1 Output . 16
3.2 Input . 18

4 Data Types and Variables 21
4.1 Integer . 21
4.2 Floating-Point . 22
4.3 Double . 23
4.4 Boolean . 24
4.5 Enumeration . 25
4.6 Character . 26

5 Operators 30
5.1 Arithmetic operators: 30
5.2 Rational Operators: 30
5.3 Bitwise Operators: 30
5.4 Logical Operators 31
5.5 Assignment Operators: 31
5.6 Increment and Decrement Operators: 32
5.7 Conditional Operators: 32
5.8 Sizeof Operator: . 32
5.9 Pointer Operators: 32
5.10 Member Access Operators: 33

1

1 Introduction to C Programming Language
C is a general-purpose, imperative, and programmer-oriented
computer programming language that supports structured
programming. It was invented in 1972 by Dennis Ritchie at Bell
Labs. C is one of the most widely used programming languages of
all time, and it has influenced many other popular programming
languages, including C++, C#, and Java.

1.1 Fundamental tasks when authoring a C Program
i. Editing: This is where one writes and edits the source code

of a C program. Afterwards, the source code is saved in a
file with a .c file extension. To view the contents of a
source file from the terminal, one can use the cat command.

Example:

user@mac %: cat sourceFile.c

ii. Compiling: This is a two-stage process: preprocessing and
compilation. The C compiler translates the source code into
machine code, creating an executable file that can be run on
a computer. It is here the source code is translated into
Assembly Language (instructions) → Object Code .obj or .o
file extension. Errors are detected in this period as well.

Example:

user@mac %: gcc -c sourceFile.c

iii. Linking: After the program has been translated into object
code, it is ready to be linked (McGoff, J., 2024). Most IDEs
have made it so that this occurs automatically duing
compilation; however, other times linking is a manual
process that demands its own seperate command. The objective
is to "combine the object modules generated by the compiler
with additonal libraries needed by the program to creat the
whole executable (McGoff, J., 2024)." Example:

2

user@mac %: gcc -c sourceFile.c
user@mac %: gcc sourceFile.o -o program

iv. Execution: There is usually a button in the GUI that will
allow for one to execute the newly compiled program. If it
is the case that execution need be done manuallyu, this can
be initiated via double-tapping the file or writing the
following command in linux terminal.

Example:

user@mac %: chmod +x sourceFile.c
user@mac %: sudo ./sourceFile.c
user@mac %: #In Windows type 'wine program.exe'

The #include statement is a preprocessor directive.
Example: #include <stdio.h>
This line tells the compiler to include the Standard Input Output
library before compiling the program. Libraries are collections
of precompiled routines that a program can use. The stdio.h
library contains routines for input and output, such as printf
and scanf.

It is not strictly part of the executable programl; however, the
program will not work without it.
The symbol # indicates this is a preprocessing directive:

• This is similar to the import statement in Java.

• These usually are placed at the beginning of the program
source file, but they can be anywhere.

• It is an instruction to the C compiler to do something
before compiling the source code

3

1.2 Single and Multi-line Comments
Comments are utilized to help one read through the program, but
it can also help point the way to the source of the logic
mistake. Comments are an essential part of writing code, as they
allow programmers to document their code and make it more
understandable for others (and themselves) in the future.

In C, comments can be written in two ways:

• Single-line comments: These are used to provid shorter
length comments. These comments begin with two forward
slashes // and continue until the end of the line. They are
used for brief explanations or notes.

Example of a single-line comment:

1 //This is a single-line comment.

• Multi-line comments: These comments begin with /* and end
with */. They can span multiple lines and are useful for
more detailed explanations.

Example of a multi-line comment:

1 /*
2 * This is a multi-line comment. I have much to say
3 * about this particular section of code, and so
4 * I have initiated a multi-line comment. Now I may
5 * provide useful commentary that spans multiple lines.
6 */

Comments are ignored by the compiler, meaning they do not affect
the execution of the program. However, they are crucial for
maintaining code quality and readability.
Best Practices:

• Use comments to explain why the code exists, not just what
it does.

• Avoid obvious comments that repeat the code verbatim.

• Maintain up-to-date comments when modifying code.

4

2 Pointers
A pointer is low-level concept. They are a powerful feature in
C that allow you to directly manipulate memory. A pointer is a
variable that stores the memory address of another variable.
It is similar to a variable in that way (stores a value and
has a location in memory). Despite the similarities, pointers and
variables have distinctly unique differences. The main differences
are that pointers are prefixed with an asterisk symbol (*) and they
store memory addresses instead of data values of another (different
variable). This can be useful for a variety of tasks, such as
dynamic memory allocation, arrays, and function arguments.

2.1 Declaring and Initializing Pointers
To declare a pointer in C, one must specify the type of data it
will point to, followed by an asterisk (*) and the pointer's name.
Below is the syntax for declaring a pointer.

Example:

1 int *ptr;

This declares a pointer to an integer. The pointer itself is
not an integer; it simply holds the address of an integer variable.
You can initialize a pointer by assigning it the address of a
variable using the & operator:

Example:

1 #include <stdio.h>
2 int main() {
3 //An int variable
4 int baseTen = 774;
5 //A pointer that stores the address of `baseTen`
6 int* thePoint = &baseTen;
7 //Display the memory location of `baseTen`
8 printf("%p", thePoint);
9 return 0;
10 }

5

2.2 Dereferencing Pointers
Dereferencing a pointer in C means using the asterisk (*)
operator to access the value at the memory address stored.

Example:

1 int value = *thePoint;

This assigns the value of thePoint (which is 774) to value.

Reasons to dereference a pointer in C:

1. Access the value at a memory address to read or modify the
value that a pointer points to.

1 int num = 10;
2 int *ptr = #
3 *ptr = 20; // Modifies the value of num
4 printf("num = %d\n", num); // Output: num = 20

2. Implement dynamic memory operations to interact with memory
allocated at runtime.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main() {
5 int *arr = (int*)malloc(3 * sizeof(int));
6 if (arr == NULL) {
7 printf("Memory allocation failed\n");
8 return 1;
9 }
10 arr[0] = 10; arr[1] = 20; arr[2] = 30;
11 printf("Values: %d, %d, %d\n", arr[0], arr[1],
arr[2]);
12 free(arr);
13 return 0;
14}

6

3. Work with function parameters efficiently to modify
arguments passed to functions.

1 void increment(int *num) {
2 (*num)++; // Dereference pointer to
modify original value
3 }
4
5 int main() {
6 int value = 5;
7 increment(&value);
8 printf("Value after increment: %d\n", value);
9 return 0;
10 }

4. Traverse arrays or strings to iterate over elements using
pointer arithmetic.

1 int arr[] = {1, 2, 3, 4, 5};
2 int *ptr = arr;
3 for (int i = 0; i < 5; i++) {
4 printf("Element %d: %d\n", i, *(ptr + i));
5 }

1 char str[] = "Hello";
2 char *p = str;
3 while (*p != '\0') {
4 printf("%c ", *p);
5 p++;
6 }

7

5. Interact with data structures to access members of
structures via pointers.

1 #include <stdio.h>
2 struct Point {
3 int x;
4 int y;
5 };
6
7 int main() {
8 struct Point p = {10, 20};
9 struct Point *ptr = &p;
10 printf("x = %d, y = %d\n", ptr->x, ptr->y);
11 (*ptr).x = 30; // Alternative way to
access member
12 printf("After update: x = %d\n", p.x);
13 return 0;
14}

6. Return multiple values from a function to allow a function
to modify multiple variables.

1 void swap(int *a, int *b) {
2 int temp = *a;
3 *a = *b;
4 *b = temp;
5 }
6
7 int main() {
8 int x = 5, y = 10;
9 swap(&x, &y);
10 printf("x = %d, y = %d\n", x, y);
11 return 0;
12}

8

7. Implement linked data structures to move through nodes in a
linked list or tree.
Example: Traversing a singly linked list

1 #include <stdio.h>
2 struct Node {
3 int data;
4 struct Node *next;
5 };
6 int main() {
7 struct Node n1 = {1, NULL};
8 struct Node n2 = {2, NULL};
9 struct Node n3 = {3, NULL};
10 n1.next = &n2; n2.next = &n3;
11 struct Node *current = &n1;
12 while (current) {
13 printf("Node data: %d\n", current->data);
14 current = current->next;
15 return 0;
16}

8. Support polymorphism in C when using function pointers or
pointers to structs.
Example: Achieving polymorphism using function pointers in C

1 typedef void (*SpeakFunc)();
2 struct Animal { SpeakFunc speak; };
3 void dogSpeak() { printf("Woof!\n"); }
4 void catSpeak() { printf("Meow!\n"); }
5 int main() {
6 struct Animal dog = {dogSpeak};
7 struct Animal cat = {catSpeak};
8 dog.speak(); // Output: Woof!
9 cat.speak(); // Output: Meow!
10 return 0;
11}

Explanation: This example demonstrates a form of
polymorphism in C using function pointers within a struct.

9

Each Animal struct can have a different speak function,
allowing different behaviors at runtime.

9. Improve performance by avoiding expensive copying of large
data structures.
Example: Passing a large structure by pointer to avoid
expensive copying

1 struct LargeData {
2 int data[10000];
3 };
4
5 void processLargeData(struct LargeData *ptr) {
6 ptr->data[0] = 42; // Modify data
directly
7 }
8
9 int main() {
10 struct LargeData big;
11 processLargeData(&big); // Pass by
pointer, not by value
12 printf("First element: %d\n", big.data[0]);
13 return 0;
14}

Passing a pointer to a large structure avoids copying its
contents, making the program faster and more memory
efficient.

10. Hardware-level programming or systems programming to
directly access specific memory addresses.
Example: Accessing a specific hardware memory address
(system programming)

1 volatile unsigned int *reg = (unsigned int
*)0x40021000;
2 *reg = 0x1; // Write value to register
3 unsigned int value = *reg; // Read value from register

Explanation: In embedded or systems programming, pointers

10

are often used to access specific memory-mapped hardware
registers.

2.3 Pointer Arithmetic
Pointers can be incremented or decremented to point to different
memory locations. Pointer arithmetic allows one to perform
operations on pointers, such as incrementing or decrementing them.
When a pointer is incremented, it moves to the next memory location
of the type it points to.

Example:

1 ptr++;

This moves the pointer to the next integer location in memory.

For example, if you have a pointer to an integer and increment
it, the pointer advances to the next integer in memory (typically
4 bytes ahead on most systems).

Example:

1 #include <stdio.h>
2 void main() {
3
4 int nums[] = {10, 20, 30};
5 int *ptr = nums;
6
7 printf("First value: %d\n", *ptr); // 10
8 printf("Second value: %d\n", *(ptr + 1)); // 20
9 printf("Third value: %d\n", *(ptr + 2)); // 30
10
11 return 0;
12
13 }

A null pointer is a pointer that does not point to any valid
memory location. You can assign a pointer to NULL to indicate
that it is not currently pointing to anything: Example:

11

1 *ptr = NULL;

2.4 Pointers and Arrays
In C, arrays and pointers are closely related. The name of an
array acts as a pointer to its first element. For example:
Example:

1 int arr[5] = {1, 2, 3, 4, 5};
2 int *ptr = arr;

Arrays and pointers are closely related in C. The name of an
array is essentially a constant pointer to its first element. For
example:

1 int arr[5] = {1, 2, 3, 4, 5};
2 int *ptr = arr;

Here, ptr points to the first element of arr. You can use pointer
arithmetic to access array elements:

1 int second = *(ptr + 1); // second = 2

Passing Arrays to Functions:

When you pass an array to a function, what is actually passed is
a pointer to its first element:

1 void printArray(int *arr, int size) {
2 for (int i = 0; i < size; i++) {
3 printf("%d ", arr[i]);
4 }
5 }

Dynamic Arrays:

For arrays whose size is not known at compile time, you can use
dynamic memory allocation with pointers:

12

1 int *dynamicArr = (int*)malloc(10 * sizeof(int));
2 // Use dynamicArr[0] ... dynamicArr[9]
3 free(dynamicArr);

Summary:

Arrays provide a way to store and access multiple values of the
same type efficiently. Pointers allow flexible manipulation of
arrays, dynamic memory allocation, and efficient function
parameter passing. Mastery of arrays and pointers is essential
for effective C programming.

2.5 Arrays in C
An array in C is a collection of elements of the same data type
stored in contiguous memory locations. Arrays provide a way to
group related data together and access elements using an index.
The index of the first element is always 0.

Declaration and Initialization:

To declare an array, specify the data type, array name, and the
number of elements in square brackets:

1 int numbers[5];

This creates an array of 5 integers. You can also initialize an
array at the time of declaration:

1 int numbers[5] = {1, 2, 3, 4, 5};

If you omit the size, the compiler will determine it from the
initializer:

1 float grades[] = {98.5, 87.0, 92.3};

Accessing Array Elements:

Elements are accessed using the index in square brackets:

13

1 numbers[0] = 10; // Assign 10 to the first
element
2 int x = numbers[2]; // Get the third element

Iterating Over Arrays:

A for loop is commonly used to process all elements:

1 for (int i = 0; i < 5; i++) {
2 printf("Element %d: %d\n", i, numbers[i]);
3 }

Multidimensional Arrays:

C supports multidimensional arrays (e.g., matrices):

1 int matrix[2][3] = {
2 {1, 2, 3},
3 {4, 5, 6}
4 };

Arrays and Memory:

Arrays are stored in contiguous memory, which allows efficient
access but also means their size must be known at compile time
(for static arrays). The name of the array acts as a pointer to
its first element.

Limitations:

• The size of a static array cannot be changed after
declaration.

• No bounds checking is performed, so accessing out-of-bounds
elements leads to undefined behavior.

2.6 Pointers to Pointers
You can have pointers that point to other pointers. This is
called a pointer to a pointer.

A pointer to a pointer is a variable that stores the address of
another pointer variable. This allows you to create multiple

14

levels of indirection, which is useful in scenarios such as
dynamic memory allocation for multidimensional arrays, or when
you want a function to modify the value of a pointer passed to
it.

Declaration:

1 int **pptr;

Here, pptr is a pointer to a pointer to an integer.

Example:

1 int value = 10;
2 int *ptr = &value; // ptr points to value
3 int **pptr = &ptr; // pptr points to ptr
4 printf("%d\n", **pptr); // Outputs 10

Explanation:

• value stores the integer 10.

• ptr stores the address of value.

• pptr stores the address of ptr.

• **pptr dereferences twice to access the value stored in
value.

Pointers to pointers are especially useful for:

• Passing a pointer to a function and allowing the function to
modify the original pointer.

• Working with dynamically allocated multidimensional arrays.

15

3 File I/O
In C, input and output operations are typically performed using
the Standard Input Output library, which provides functions for
reading from and writing to the console. The most commonly used
functions for input and output are printf and scanf.

3.1 Output
If you are familiar with generating output in Java (I/O), then
you will be pleasantly surprised by how output is generated in C.
To display output in the C programming language, one would use
the printf("") function. To read input in the C programming
language, one would use the scanf() function.

Example:

1 // The following will print “Hello World!”
2 printf("Hello World!");
3
4 Hello World!

The printf() function is the primary way to display output in C.
It allows you to print formatted text, numbers, and variables to
the console. The function uses format specifiers to control how
values are displayed. Some common format specifiers include:

• %d -- Print an integer (decimal)

• %f -- Print a floating-point number

• %c -- Print a single character

• %s -- Print a string

• %x -- Print an integer in hexadecimal

• %p -- Print a pointer (memory address)

Example:

16

1 #include <stdio.h>
2 int main() {
3 int i = 42;
4 float f = 3.1415;
5 char c = 'A';
6 char str[] = "Hello";
7
8 printf("Integer: %d\n", i);
9 printf("Float: %f\n", f);
10 printf("Char: %c\n", c);
11 printf("String: %s\n", str);
12 return 0;
13 }

Controlling Output Format:

You can control the width, precision, and alignment of output
using modifiers in the format string. For example, %.2f prints a
floating-point number with two decimal places, and %10d prints an
integer in a field at least 10 characters wide.

Example:

1 printf("Pi to 2 decimals: %.2f\n", 3.14159);
2 printf("Right aligned: %10d\n", 123);
3 printf("Left aligned: %-10d\n", 123);

Escape Sequences:

Special characters can be printed using escape sequences:

• \n -- Newline

• \t -- Tab

• \\ -- Backslash

• \" -- Double quote

Example:

17

1 printf("Line1\nLine2\n");

Summary: printf() is a versatile function for displaying all
types of data in C. Mastery of format specifiers and escape
sequences is essential for producing clear and well-formatted
output.

3.2 Input
The C library contains several input functions, and `scanf()` is
the most general of them. It is a favorable option amongst many
due to its flexibility and the various formats it can handle.

Input is essential in the operation of many programs. The scanf
function reads from the standard input stream (stdin) and scans
that input according to the format provided. The format can be a
simple constant string, or you can specify as follows:

1. %s - String

2. %d - Base-10

3. %c - Character

4. %f - Float

5. %li - Long

If the stdin is input from the keyboard then text is read in.
This is because the keys generate text characters: letters,
digits, and punctuation. For illustration, when one enters the
integer 2014, they type the characters 2 0 1 and 4.

If you want to store that as a numerical value rather than as a
string, your program has to convert the string char-by-char to a
numerical value. This is the job of the scanf function. Similar
to printf(), scanf() uses a control string followed by a list of
arguments. A control string indicates the destination data types
for the input stream of characters.

18

Example:

1 #include <stdio.h>
2 int main() {
3 char str[100];
4 int i;
5
6 printf("Enter a value :");
7 scanf("%s %d", str, &i);
8
9 printf("You entered: %s %d", str, i);
10
11 return 0;
12 }

Explanation:

This program demonstrates how to use scanf() to read both a
string and an integer from the user. The %s format specifier
tells scanf() to expect a string, while %d expects an integer.
The variables str and i are passed to scanf(), with &i providing
the address where the integer input should be stored. After
reading the input, the program prints the values using printf().

• Note: When using %s, scanf() reads input until the first
whitespace character (space, tab, or newline). To read a
full line of text (including spaces), consider using fgets()
instead.

• Always ensure that the input buffer is large enough to store
the expected input to avoid buffer overflows.

Example Character:

19

1 #include <stdio.h>
2 int main() {
3 char c;
4 float f;
5 long l;
6
7 printf("Enter a char, a float, and a long int:");
8 scanf("%c %f %li", &c, &f, &l);
9
10 printf("You entered: %c, %f, %li", c, f, l);
11
12 return 0;
13 }

20

4 Data Types and Variables
C Supports man types of variables and each type of ariable is
used for storing a specific kind of data. There is no string data
type, nor is there a string object. A string is a character
array. That is to say, in C a string is literally an array of
characters. The difference between the types is in the amount of
memory they occupy, and the range of values they can hold. The
amount of storage that is allocated to store a particular type of
data depends on the computer you are running (machine-dependent).
An integer might take up 32 bits on your computer, or it might be
stored in 64 bits.

For example, the size of an int or a long may vary between
different systems or compilers. This means that a program
compiled on one machine may use a different amount of memory for
the same data type than when compiled on another machine. As a
result, it is important to be aware of these differences when
writing portable C code, and to use standard types (such as those
defined in <stdint.h>) when exact sizes are required.
The following are some examples of basic data types in C:

1. Int - integer

2. Float - floating point

3. Double - long floating point

4. _Bool - true/false value

5. Enum - Enumeration

6. Char - character

4.1 Integer
A variable of type int can be used to contain integral values. If
a minus sign precedes the integer, it negates the value. That is
to say, it makes the number that follows minus sign a negative
number. The int type sets aside space for whole numbers. It must
be an integer which can be positive, negative, or zero. Variables
of type int are either 2 bytes or 4 bytes.

21

If it is the case that an integer is preceded by a szero and the
letter x, the value is taken as being expressed in hexadecimal
(Base-16) notation.
Example:

1 int rgbColor = 0xFFEF0D;

This declares an integer variable rgbColor and assigns it the
hexadecimal value 0xFFEF0D. Again, in the C Programming Language
hexadecimal numbers are prefixed with 0x.

The values 1908, -100, and 0 are all valid examples of integer
constants. An integer constant is a whole number value written
directly in the code, without any fractional or decimal part.
Integer constants can be positive, negative, or zero, and are
typically written in decimal (e.g., 42), hexadecimal (e.g.,
0x2A), or octal (e.g., 052) notation.

NOTE: Values cannot be expressed using commas. For illustration,
the number 10,000 would have to be written as 10000.

C offers many other integer types, providing for more flexibility
when programming. This is especially useful when precision is
necessary. Moreover, C offers three adjective keywords to modify
the basic integer types:

• `short`

• `long`

• `unsigned`

Short types use lesser storage than type long, ultimately saving
space. This can be particularly useful when larger numbers are
not needed. Long types use more storage, but serve their own
purpose in providing the allocation of larger numbers when
needed.

4.2 Floating-Point
A variable of type float can be used for storing floating-point
numbers. That is to say, numerical values that contain decimal

22

places (fractions) are of the type float. "Float in C is used to
represent real numbers with decimal points (prepbytes.com)."
Float is utilized to store single-precision floating point
numbers. The values 4.0, 199.0, and -.111 are all sound examples
of floating-point constants and would qualify for variable
assignment.

Example:

1// The variable `floatVariable` stores the value 3.7
2 float floatVariable = 3.70;

Furthermore, it is permissible to express floating-point
constants in scientific notation.

Example:

1 float myFloat = 2.5e4;
2 // This represents the value 2.5 * 104

NOTE: Floating-point numbers can store decimal values with
precision up to 6-7 decimal places. For numbers that require
greater precision a double might suffice. This is owing to the
fact that it has twice the precision of a floating point number.

4.3 Double
The Double type is the same as type Float, but with roughtly
twice the precision. Doubles are used whenever the range provided
by a float variable is insufficient. It can store twice as many
significant digits. This is important as the allowance of twice
as many significant digits increases precision, and overall
accuracy.

Example:

1 double applePi = 3.141592653589;
2 // `applePi` stores the value 3.141592653589

23

Moreover, most computers represent double values using 64 bits.

NOTE: All floating-point constants are taken as double values by
the C compiler. To explicitly express a floating constant, append
either an f or F to the end of the number.

Example:

1 float myFloat = 12.5f;
2 // This is a float constant

The same type specifiers used for integers can also be applied to
doubles. Aside: A long double constant is written as a floating
constant with the letter `l` or `L` immediately following.

• `short`

• `long`

• `unsigned`

Example:

1 long double gradePoint = 3.88;

4.4 Boolean
The _Bool data type can be used to store just the values 0 or 1.
Boolean values are used for indicating an on/off, yes/no, or
true/false condition. This data type provides binary choices
only.

The Bool data type in C is represented using the keyword _Bool
(introduced in C99). To use the more familiar bool, true, and
false keywords, include the <stdbool.h> header.

Example:

1 #include <stdbool.h>
2 bool isActive = true;
3 bool isFinished = false;

true is equivalent to 1, and false is equivalent to 0. You can

24

use boolean variables in conditional statements and logical
operations.

Example with _Bool:

1 _Bool flag = 1;
2 if (flag) { /* ... */ }

_Bool variables are used in programs that need to indicate a
Boolean condition. For example, a variable of this type might be
used to indicate whether all data was read from a file.
Example:

1 // 0 is used to indicate a false value
2 // 1 is used to indicate a true value
3 _Bool myBool = 0;

4.5 Enumeration
Enum is short for enumeration. One might enumerate to access an
individual element in the `enum` itself (enumeration). Enum is a
"data type that allows a programmer to define a variable and
specify the valid values that could be stored into that variable
(McGoff, J. 2024)." // To create an enum use the enum keyword,

followed by the name of the enum, and seperate the enum items
with a comma:

1 #include <stdio.h>.
2 int main() {
3 enum GameLevel {
4 EASY,
5 MEDIUM,
6 HARD
7 };
8
9 return 0;
10 }

25

NOTE: Not dissimilar to JavaScript Object Notation, the last
element _does not require a comma after declaration opf the
value.

Enum declaration and definition process is as follows:

1. Define the data type (enum in this case)

2. Provide a name for the enumerated data type.

3. Provide an opening curly brace `{`

4. List all of the permissible values

5. Provide a closing curly brace `}` followed by a semicolon

The compiler actually treats enumeration identifiers as integer
constants. If you want to have a specific integer value
associated with an enumeration identifier, the integer can be
assined to the identifier when the datat type is defined.

4.6 Character
Characters represent a single character such as the letter `A`,
the digit character `6`, or a semicolon (;). Again, in C there
are no `string` objects, instead one would use an array of
characters. Character literals use single quotes such as `A` or
`Z`. You can also declare variables of type char to be unsigned.
This can be used to explicitly tell the compiler that a
particular variable is a signed quantity.

Characters in C are stored using the `char` data type, which
typically occupies 1 byte (8 bits) of memory. This allows it to
represent 256 different values, which is sufficient for the
standard ASCII character set. Each character is internally
represented by its corresponding integer ASCII value.

Example:

1 char letter = 'A';
2 char digit = '7';
3 char symbol = '$';

26

You can use the printf() function with the %c format specifier to
display characters, and with %d to display their ASCII values.

Example:

1 printf("Character: %c, ASCII: %d\n", letter, letter);

Character Arrays (Strings):

Although C does not have a built-in string type, you can create
strings using arrays of characters terminated by the null
character `\0`.

Example:

1 char greeting[] = "Hello";

This creates a character array with the contents `H`, `e`, `l`,
`l`, `o`, `\0`.

Escape Sequences:

Special characters can be represented using escape sequences,
such as:

• \n -- Newline

• \t -- Tab

• \' -- Single quote

• \" -- Double quote

• \0 -- Null character (string terminator)

Example:

1 char newline = '\n';

Following are both valid and invalid ways to declare a define a
variable of type `char`.

Example

27

1 #include <stdio.h>.
2 int main() {
3 char broiled; // Here we declare
variable `broiled` to be of type char
4
5 broiled = 'T'; // This is a valid
definition
6 broiled = T; // This definition is
invalid (compiler assumes T is a variable)
7 broiled = "T"; // This definition is
invalid (compiler assumes "T" is a string)
8
9 return 0;
10 }

Summary: Characters are fundamental in C for representing textual
data, and understanding how to manipulate both individual
characters and arrays of characters (strings) is essential for
effective C programming.

Escape Characters: C contains special characters that
represent actions such as:

• Backspacing

• Going to the next line

• Making the terrminal bell ring (or speaker beep)

We can represent these actions by using special sequences called
escape sequences. Escape sequences must be enclosed in single
quotes when assigned to a variable of type char.

• '\a' → Alert (ANSI C).

• '\b' → Backspace

• '\f' → Form feed

• '\n' → Newline

• '\r' → Carriage return

• '\t' → Horizontal tab

28

• '\\' → Backslash

• '\'' → Single quote

• '\?' → Question mark (?).

Following as an example of declaring a variable of type char and
assigning an escape sequence as the value.

Example:

1 #include <stdio.h>.
2 int main() {
3 char x = '\n';
4
5 return 0;
6 }

29

5 Operators
Operators in C programming are symbols that specify the type of
operatoion to be performed on operands. They are categorized into
several types. Operators are fundamental building blocks in C,
allowing developers to manipulate data and variables to achieve
desired outcomes. these operators enable a wide range of
operations and control structures within C programs.

NOTE: understanding these operators is crucial for writing
efficient and effective C code.

Following are several types for which operators are categorized:

5.1 Arithmetic operators:
Perform basic mathematical operations like addition,
subtraction, muliplication, division, and modulus.

1 int a = 10, b = 3;
2 int sum = a + b; // Addition (13)
3 int diff = a - b; // Subtraction (7)
4 int prod = a * b; // Multiplication (30)
5 int quot = a / b; // Division (3)
6 int mod = a % b; // Modulus (1)

5.2 Rational Operators:
Compare two values and determine the relational relationship
such as equal to, not equal to, greater than, and less than.

1 int x = 5, y = 10;
2 if (x < y) {
3 printf("x is less than y\n");
4 }

5.3 Bitwise Operators:
Perform operationss on binary representations of data such
as AND, OR, XOR, NOT, left shift, and right shift.

30

1 int a = 5; // 0101 in binary
2 int b = 3; // 0011 in binary
3 int andResult = a & b; // Bitwise AND (1)
4 int orResult = a | b; // Bitwise OR (7)
5 int xorResult = a ^ b; // Bitwise XOR (6)
6 int notResult = ~a; // Bitwise NOT (depends on
system)
7 int leftShift = a << 1; // Left shift (10)
8 int rightShift = a >> 1; // Right shift (2)

5.4 Logical Operators
: Used to combine conditional statements, including AND, OR,
and NOT.

1 int a = 1, b = 0;
2 if (a && b) {
3 printf("Both are true\n");
4 }
5 if (a || b) {
6 printf("At least one is true\n");
7 }
8 if (!b) {
9 printf("b is false\n");
10 }

5.5 Assignment Operators:
Assign values to variables, with variations that combine
assignment with arithmetic or bitwise operations.

1 int x = 5; // Simple assignment
2 x += 3; // x = x + 3 (x becomes 8)
3 x -= 2; // x = x - 2 (x becomes 6)
4 x *= 4; // x = x * 4 (x becomes 24)
5 x /= 6; // x = x / 6 (x becomes 4)
6 x %= 3; // x = x % 3 (x becomes 1)

31

5.6 Increment and Decrement Operators:
Increase or decrease a variables value by one.

1 int count = 10;
2 count++; // Increment (count
becomes 11)
3 count--; // Decrement (count
becomes 10)
4 ++count; // Pre-increment (count
becomes 11)
5 --count; // Pre-decrement (count
becomes 10)

5.7 Conditional Operators:
Allows multiple expressions to be evaluated in a single
statement.

1 int a = 10, b = 20;
2 int max = (a > b) ? a : b; // max is 20
3 printf("The maximum value is: %d\n", max);

5.8 Sizeof Operator:
Returns the size of a data type or a variable

1 int num;
2 printf("Size of int: %zu bytes\n", sizeof(num));
3 printf("Size of double: %zu bytes\n",
sizeof(double));

5.9 Pointer Operators:
These are used to reference and dereference pointers
(address-of and indirection operators).

32

1 int value = 42;
2 int *ptr = &value; // & is the address-of
operator
3 int result = *ptr; // * is the
dereference operator
4 printf("Value: %d, Address: %p\n", result, ptr);

Explanation: The & operator obtains the address of a
variable, and the * operator accesses the value at a given
address (dereferencing the pointer).

5.10 Member Access Operators:
Access memebers of structuress and unions, including dot and
arrow operators.

1 #include <stdio.h>
2 struct Person {
3 char name[20];
4 int age;
5 };
6
7 int main() {
8 struct Person p1;
9 strcpy(p1.name, "Alice");
10 p1.age = 30;
11 struct Person *ptr = &p1;
12 printf("Name: %s, Age: %d\n", ptr->name,
ptr->age);
13 return 0;
14}

Explanation: The . operator accesses members of a struct
variable (e.g., p1.age), while the -> operator accesses
members via a pointer to a struct (e.g., ptr->name).

33

	Introduction to C Programming Language
	Fundamental tasks when authoring a C Program
	Single and Multi-line Comments

	Pointers
	Declaring and Initializing Pointers
	Dereferencing Pointers
	Pointer Arithmetic
	Pointers and Arrays
	Arrays in C
	Pointers to Pointers

	File I/O
	Output
	Input

	Data Types and Variables
	Integer
	Floating-Point
	Double
	Boolean
	Enumeration
	Character

	Operators
	Arithmetic operators:
	Rational Operators:
	Bitwise Operators:
	Logical Operators
	Assignment Operators:
	Increment and Decrement Operators:
	Conditional Operators:
	Sizeof Operator:
	Pointer Operators:
	Member Access Operators:

